# 高阶导数的定义

定义 111: 如果函数 f(x)f(x)f(x) 的导数 f′(x)f'(x)f′(x) 仍可导,即

(f′(x))′=lim⁡Δx→0f′(x+Δx)−f′(x)Δx(f'(x))' = \lim_{\Delta x \to 0} \frac {f'(x + \Delta x) - f'(x)} {\Delta x}

(f′(x))′=Δx→0lim​Δxf′(x+Δx)−f′(x)​

则称 (f′(x))′(f'(x))'(f′(x))′ 为函数 f(x)f(x)f(x) 的二阶导数,记为 f′′(x)f''(x)f′′(x)。

f(x)f(x)f(x) 的 nnn 阶导数记为:

f(n)(x),y(n),dnydxn,dnf(x)dxnf^{(n)}(x), y^{(n)}, \frac {\mathrm d^n y} {\mathrm d x^n}, \frac {\mathrm d^n f(x)} {\mathrm d x^n}

f(n)(x),y(n),dxndny​,dxndnf(x)​

二阶和二阶以上的导数统称为高阶导数。

# 莱布尼茨公式

定理 111(莱布尼茨公式): 设函数 f(x)f(x)f(x) 和 g(x)g(x)g(x) 具有 nnn 阶导数,则

(f⋅g)(n)=∑k=0nCnkf(n−k)g(k)(f \cdot g)^{(n)} = \sum_{k = 0}^n C_n^k f^{(n - k)} g^{(k)}

(f⋅g)(n)=k=0∑n​Cnk​f(n−k)g(k)

证明(归纳法): 令 n−k=i,k=jn - k = i, k = jn−k=i,k=j,公式变为:

(f⋅g)(n)=∑i+j=n(i+j)!i!j!f(i)g(j)(f \cdot g)^{(n)} = \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j)}

(f⋅g)(n)=i+j=n∑​i!j!(i+j)!​f(i)g(j)

(1) 当 n=2n = 2n=2 显然成立;

(2) 设 (f⋅g)(n)=∑i+j=n(i+j)!i!j!f(i)g(j)(f \cdot g)^{(n)} = \sum_{i + j = n} \dfrac {(i + j)!} {i! j!} f^{(i)} g^{(j)}(f⋅g)(n)=∑i+j=n​i!j!(i+j)!​f(i)g(j) 成立;

(3)

(f⋅g)(n+1)=(∑i+j=n(i+j)!i!j!f(i)g(j))′=∑i+j=n(i+j)!i!j!(f(i)g(j))′=∑i+j=n(i+j)!i!j!f(i+1)g(j)+∑i+j=n(i+j)!i!j!f(i)g(j+1)=∑i+j=n+1(n!(i−1)!j!+n!i!(j−1)!)f(i)g(j)=∑i+j=n+1(n+1)!i!j!f(i)g(j)\begin {aligned}

(f \cdot g)^{(n + 1)} &= \left( \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j)} \right)' \\

&= \sum_{i + j = n} \frac {(i + j)!} {i! j!} (f^{(i)} g^{(j)})' \\

&= \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i + 1)} g^{(j)} + \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j + 1)} \\

&= \sum_{i + j = n + 1} \left( \frac {n!} {(i - 1)! j!} + \frac {n!} {i! (j - 1)!} \right) f^{(i)} g^{(j)} \\

&= \sum_{i + j = n + 1} \frac {(n + 1)!} {i! j!} f^{(i)} g^{(j)}

\end {aligned}

(f⋅g)(n+1)​=(i+j=n∑​i!j!(i+j)!​f(i)g(j))′=i+j=n∑​i!j!(i+j)!​(f(i)g(j))′=i+j=n∑​i!j!(i+j)!​f(i+1)g(j)+i+j=n∑​i!j!(i+j)!​f(i)g(j+1)=i+j=n+1∑​((i−1)!j!n!​+i!(j−1)!n!​)f(i)g(j)=i+j=n+1∑​i!j!(n+1)!​f(i)g(j)​

# 高阶导数的计算

# 直接计算,求出前几阶后归纳法证明通式

例 111. 设 y=ln⁡(1+x)y = \ln (1 + x)y=ln(1+x),求 y(n)y^{(n)}y(n).

解:

y′=11+xy′′=−1(1+x)2y′′′=2!(1+x)3y(4)=−3!(1+x)4⋯ ⋯y(n)=(−1)n−1(n−1)!(1+x)n(n≥1,0!=1)\begin {matrix}

y' = \dfrac 1 {1 + x} & y'' = - \dfrac 1 {(1 + x)^2} \\

y''' = \dfrac {2!} {(1 + x)^3} & y^{(4)} = - \dfrac {3!} {(1 + x)^4} \\

\end {matrix} \\

\cdots \, \cdots \\

y^{(n)} = (-1)^{n - 1} \frac {(n - 1)!} {(1 + x)^n} \qquad (n \ge 1, 0! = 1)

y′=1+x1​y′′′=(1+x)32!​​y′′=−(1+x)21​y(4)=−(1+x)43!​​⋯⋯y(n)=(−1)n−1(1+x)n(n−1)!​(n≥1,0!=1)

# 使用莱布尼茨公式

例 222. 设 y=x2e2xy = x^2 e^{2x}y=x2e2x,求 y(20)y^{(20)}y(20)。

解: 设 u=e2x,v=x2u = e^{2x}, v = x^2u=e2x,v=x2,则由莱布尼兹公式知:

y(20)=(e2x)(20)⋅x2+20(e2x)(19)⋅(x2)′+20×192!(e2x)(18)⋅(x2)′′+0=220e2x⋅x2+20⋅219e2x⋅2x+20⋅192!218e2x⋅2=220e2x(x2+20x+95)\begin {aligned}

y^{(20)} &= (e^{2x})^{(20)} \cdot x^2 + 20 (e^{2x})^{(19)} \cdot (x^2)' + \frac {20 \times 19} {2!} (e^{2x})^{(18)} \cdot (x^2)'' + 0 \\

&= 2^{20} e^{2x} \cdot x^2 + 20 \cdot 2^{19} e^{2x} \cdot 2x + \frac {20 \cdot 19} {2!} 2^{18} e^{2x} \cdot 2 \\

&= 2^{20} e^{2x} (x^2 + 20x + 95)

\end {aligned}

y(20)​=(e2x)(20)⋅x2+20(e2x)(19)⋅(x2)′+2!20×19​(e2x)(18)⋅(x2)′′+0=220e2x⋅x2+20⋅219e2x⋅2x+2!20⋅19​218e2x⋅2=220e2x(x2+20x+95)​

例 333. 设 y=arcsin⁡xy = \arcsin xy=arcsinx,求 y(n)(0)y^{(n)}(0)y(n)(0)。

解: 由 y′=11−x2,y′′=x(1−x2)32=xy′1−x2y' = \dfrac 1 {\sqrt {1 - x^2}}, y'' = \dfrac x {(1 - x^2)^{\frac 3 2}} = \dfrac {xy'} {1 - x^2}y′=1−x2​1​,y′′=(1−x2)23​x​=1−x2xy′​ 得:

(1−x2)y′′−xy′=0(1 - x^2)y'' - xy' = 0

(1−x2)y′′−xy′=0

由莱布尼茨公式求 n−2n - 2n−2 次导得:

(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0(n≥3)(1 - x^2) y^{(n)} - (2n - 3) xy^{(n - 1)} - (n - 2)^2 y^{(n - 2)} = 0 (n \ge 3)

(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0(n≥3)

令 x=0x = 0x=0 有 y(n)(0)=(n−2)2y(n−2)(0)y^{(n)}(0) = (n - 2)^2 y^{(n - 2)}(0)y(n)(0)=(n−2)2y(n−2)(0)。

由 y′(0)=1,y′′(0)=0y'(0) = 1, y''(0) = 0y′(0)=1,y′′(0)=0 得:

y(n)(0)={[(2k−1)!!]2n=2k+1,0n=2k.y^{(n)}(0) = \begin {cases}

[(2k - 1)!!]^2 & n = 2k + 1, \\

0 & n = 2k.

\end {cases}

y(n)(0)={[(2k−1)!!]20​n=2k+1,n=2k.​

# 间接法:利用已知的高阶导数

常用高阶导数公式:

(ax)(n)=axln⁡na(a>0),(ex)(n)=ex(a^x)^{(n)} = a^x \ln^n a \quad (a > 0), (e^x)^{(n)} = e^x(ax)(n)=axlnna(a>0),(ex)(n)=ex

(sin⁡kx)(n)=knsin⁡(kx+nπ2)(\sin kx)^{(n)} = k^n \sin (kx + \dfrac {n \pi} 2)(sinkx)(n)=knsin(kx+2nπ​)

(cos⁡kx)(n)=kncos⁡(kx+nπ2)(\cos kx)^{(n)} = k^n \cos (kx + \dfrac {n \pi} 2)(coskx)(n)=kncos(kx+2nπ​)

(xα)(n)=α!(α−n)!xα−n(x^{\alpha})^{(n)} = \dfrac {\alpha!} {(\alpha - n)!} x^{\alpha - n}(xα)(n)=(α−n)!α!​xα−n

(ln⁡x)(n)=(−1)n−1(n−1)!xn(\ln x)^{(n)} = (-1)^{n - 1} \dfrac {(n - 1)!} {x^n}(lnx)(n)=(−1)n−1xn(n−1)!​

(1x)(n)=(−1)nn!xn+1(\dfrac 1 x)^{(n)} = (-1)^n \dfrac {n!} {x^{n + 1}}(x1​)(n)=(−1)nxn+1n!​

例 444. 设 y=sin⁡6x+cos⁡6xy = \sin^6 x + \cos^6 xy=sin6x+cos6x,求 y(n)y^{(n)}y(n)。

解:

y=(sin⁡2x)3+(cos⁡2x)3=(sin⁡2x+cos⁡2x)(sin⁡4x−sin⁡2xcos⁡2x+cos⁡4x)=(sin⁡2x+cos⁡2x)2−3sin⁡2xcos⁡2x=1−34sin⁡22x=1−34⋅1−cos⁡4x2=58+38cos⁡4x∴y(n)=38⋅4n⋅cos⁡(4x+nπ2)\begin {aligned}

y &= (\sin^2 x)^3 + (\cos^2 x)^3 \\

&= (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \\

&= (\sin^2 x + \cos^2 x)^2 - 3 \sin^2 x \cos^2 x \\

&= 1 - \frac 3 4 \sin^2 2x = 1 - \frac 3 4 \cdot \frac {1 - \cos 4x} 2 \\

&= \frac 5 8 + \frac 3 8 \cos 4x

\end {aligned} \\

\therefore y^{(n)} = \dfrac 3 8 \cdot 4^{n} \cdot \cos (4x + \dfrac {n \pi} 2)

y​=(sin2x)3+(cos2x)3=(sin2x+cos2x)(sin4x−sin2xcos2x+cos4x)=(sin2x+cos2x)2−3sin2xcos2x=1−43​sin22x=1−43​⋅21−cos4x​=85​+83​cos4x​∴y(n)=83​⋅4n⋅cos(4x+2nπ​)

# 习题

求下列函数的 nnn 阶导数:

(1) y=sin⁡axsin⁡bxy = \sin ax \sin bxy=sinaxsinbx;

(2) y=ex(sin⁡x+cos⁡x)y = e^x (\sin x + \cos x)y=ex(sinx+cosx);

(3) y=ln⁡a+bxa−bxy = \ln \dfrac {a + bx} {a - bx}y=lna−bxa+bx​。

(1) y=sin⁡axsin⁡bx=12(cos⁡[(a−b)x]−cos⁡[(a+b)x])y = \sin ax \sin bx = \dfrac 1 2 (\cos [(a - b) x] - \cos [(a + b) x])y=sinaxsinbx=21​(cos[(a−b)x]−cos[(a+b)x]),则:

y(n)(x)=12(a−b)n[cos⁡(a−b)x+nπ2]−12(a+b)n[cos⁡(a+b)x+nπ2] y^{(n)}(x) = \frac 1 2 (a - b)^n \left[ \cos (a - b) x + \frac {n \pi} 2 \right] - \frac 1 2 (a + b)^n \left[ \cos (a + b) x + \frac {n \pi} 2 \right]

y(n)(x)=21​(a−b)n[cos(a−b)x+2nπ​]−21​(a+b)n[cos(a+b)x+2nπ​]

能不产生 nnn 项求和符号就不出现(之前直接套用了莱布尼茨公式,然后成了 nnn 项求和表示形式,不如这个简洁)

(2) 解:化简原函数得:

y=2exsin⁡(x+π4)y(n)=(2)n+1exsin⁡[x+(n+1)π4] y = \sqrt 2 e^x \sin \left( x + \frac \pi 4 \right) \\

y^{(n)} = (\sqrt 2)^{n + 1} e^x \sin \left[ x + \frac {(n + 1) \pi} 4 \right]

y=2​exsin(x+4π​)y(n)=(2​)n+1exsin[x+4(n+1)π​]

原因同上

(3) 解:

y=ln⁡(a+bx)−ln⁡(a−bx)y′=ba+bx+ba−bxy′′=−b2(a+bx)2+b2(a−bx)2⋯ ⋯y(n)=(n−1)![bn(a−bx)n+(−1)n−1bn(a+bx)n] y = \ln (a + bx) - \ln (a - bx) \\

y' = \frac b {a + bx} + \frac b {a - bx} \\

y'' = - \frac {b^2} {(a + bx)^2} + \frac {b^2} {(a - bx)^2} \\

\cdots \, \cdots\\

y^{(n)} = (n - 1)! \left[ \frac {b^n} {(a - bx)^n} + (-1)^{n - 1} \frac {b^n} {(a + bx)^n} \right]

y=ln(a+bx)−ln(a−bx)y′=a+bxb​+a−bxb​y′′=−(a+bx)2b2​+(a−bx)2b2​⋯⋯y(n)=(n−1)![(a−bx)nbn​+(−1)n−1(a+bx)nbn​]

求下列函数的 nnn 阶导数:

y=x2sin⁡3xy = x^2 \sin 3x

y=x2sin3x

解:当 n≤2n \le 2n≤2 时,由莱布尼茨公式:

y(n)=∑i=0nCni(n−i)!i!3isin⁡(3x+iπ2) y^{(n)} = \sum_{i = 0}^n C_n^i \frac {(n - i)!} {i!} 3^{i} \sin (3x + \frac {i \pi} 2)

y(n)=i=0∑n​Cni​i!(n−i)!​3isin(3x+2iπ​)

当 n>2n > 2n>2 时,由莱布尼茨公式:

y(n)=3nx2sin⁡(3x+nπ2)+2n⋅3n−1xsin⁡[3x+(n−1)π2]+n(n−2)⋅3n−2sin⁡[3x+(n−2)π2] y^{(n)} = 3^n x^2 \sin (3x + \frac {n \pi} 2) + 2n \cdot 3^{n - 1} x \sin \left[ 3x + \frac {(n - 1) \pi} 2 \right] + n (n - 2) \cdot 3^{n - 2} \sin \left[ 3x + \frac {(n - 2) \pi} 2 \right]

y(n)=3nx2sin(3x+2nπ​)+2n⋅3n−1xsin[3x+2(n−1)π​]+n(n−2)⋅3n−2sin[3x+2(n−2)π​]

套用莱布尼茨公式时忘了算组合数

对下列方程所确定的隐函数 y=y(x)y = y(x)y=y(x),求 d2ydx2\dfrac {\mathrm d^2 y} {\mathrm d x^2}dx2d2y​:

tan⁡(x+y)−xy=0\tan (x + y) - xy = 0

tan(x+y)−xy=0

解:左右两边同时对 xxx 求导:

(1+dydx)sec⁡2(x+y)−y−xdydx=0(1) \left( 1 + \frac {\mathrm d y} {\mathrm d x} \right) \sec^2 (x + y) - y - x \frac {\mathrm d y} {\mathrm d x} = 0 \tag {1}

(1+dxdy​)sec2(x+y)−y−xdxdy​=0(1)

整理得:

dydx=y−sec⁡2(x+y)sec⁡2(x+y)−x \frac {\mathrm d y} {\mathrm d x} = \frac {y - \sec^2 (x + y)} {\sec^2 (x + y) - x}

dxdy​=sec2(x+y)−xy−sec2(x+y)​

对 (1)(1)(1) 式两边继续对 xxx 求导得:

d2ydx2sec⁡2(x+y)+(1+dydx)2⋅2sec⁡2(x+y)tan⁡(x+y)−2dydx−xd2ydx=0 \frac {\mathrm d^2 y} {\mathrm d x^2} \sec^2 (x + y) + \left( 1 + \frac {\mathrm d y} {\mathrm d x} \right)^2 \cdot 2 \sec^2 (x + y) \tan (x + y) - 2 \frac {\mathrm d y} {\mathrm d x} - x \frac {\mathrm d^2 y} {\mathrm d x} = 0

dx2d2y​sec2(x+y)+(1+dxdy​)2⋅2sec2(x+y)tan(x+y)−2dxdy​−xdxd2y​=0

整理得:

d2ydx2=[2−4sec⁡2(x+y)tan⁡(x+y)]y−sec⁡2(x+y)sec⁡2(x+y)−x−2sec⁡2(x+y)tan⁡(x+y)sec⁡2(x+y)+2sec⁡2(x+y)tan⁡(x+y)−x \frac {\mathrm d^2 y} {\mathrm d x^2} = \frac {[2 - 4 \sec^2 (x + y) \tan (x + y)] \dfrac {y - \sec^2 (x + y)} {\sec^2 (x + y) - x} - 2 \sec^2 (x + y) \tan (x + y)} {\sec^2 (x + y) + 2 \sec^2 (x + y) \tan (x + y) - x}

dx2d2y​=sec2(x+y)+2sec2(x+y)tan(x+y)−x[2−4sec2(x+y)tan(x+y)]sec2(x+y)−xy−sec2(x+y)​−2sec2(x+y)tan(x+y)​

对下列参数方程确定的函数 y=y(x)y = y(x)y=y(x),求 d2ydx2\dfrac {\mathrm d^2 y} {\mathrm d x^2}dx2d2y​:

{x=atcos⁡ty=atsin⁡t\begin {cases}

x = at \cos t \\

y = at \sin t

\end {cases}

{x=atcosty=atsint​

解:

dxdt=a(cos⁡t−tsin⁡t)dydt=a(sin⁡t+tcos⁡t)dydx=dydtdxdt=sin⁡t+tcos⁡tcos⁡t−tsin⁡td2ydx2=ddydxdtdxdt=(2sin⁡t+tcos⁡t)(sin⁡t+tcos⁡t)+(cos⁡t−tsin⁡t)(2cos⁡t−tsin⁡t)(cos⁡t−tsin⁡t)2a(cos⁡t−tsin⁡t)=t2+2a(cos⁡t−tsin⁡t)3 \frac {\mathrm d x} {\mathrm d t} = a (\cos t - t \sin t) \\

\frac {\mathrm d y} {\mathrm d t} = a (\sin t + t \cos t) \\

\frac {\mathrm d y} {\mathrm d x} = \frac {\dfrac {\mathrm d y} {\mathrm d t}} {\dfrac {\mathrm d x} {\mathrm d t}} = \frac {\sin t + t \cos t} {\cos t - t \sin t} \\

\frac {\mathrm d^2 y} {\mathrm d x^2} = \frac {\dfrac {\mathrm d \dfrac {\mathrm d y} {\mathrm d x}} {\mathrm d t}} {\dfrac {\mathrm d x} {\mathrm d t}} = \frac {\dfrac {(2 \sin t + t \cos t)(\sin t + t \cos t) + (\cos t - t \sin t)(2 \cos t - t \sin t)} {(\cos t - t \sin t)^2}} {a (\cos t - t \sin t)} = \frac {t^2 + 2} {a (\cos t - t \sin t)^3}

dtdx​=a(cost−tsint)dtdy​=a(sint+tcost)dxdy​=dtdx​dtdy​​=cost−tsintsint+tcost​dx2d2y​=dtdx​dtddxdy​​​=a(cost−tsint)(cost−tsint)2(2sint+tcost)(sint+tcost)+(cost−tsint)(2cost−tsint)​​=a(cost−tsint)3t2+2​

一阶导的分子分母搞反了

设 y=(arcsin⁡x)2y = (\arcsin x)^2y=(arcsinx)2,

(1) 证明:(1−x2)y′′−xy′=2(1 - x^2) y'' - xy' = 2(1−x2)y′′−xy′=2;(2) 求 y(n)(0)y^{(n)}(0)y(n)(0)。

(1) 证明:

y′=2arcsin⁡x1−x2y′′=2(1−arcsin⁡x−2x21−x2)1−x2=2(1−x2+xarcsin⁡x)(1−x2)32(1−x2)y′′−xy′=2+2xarcsin⁡x1−x2−2xarcsin⁡x1−x2=2 y' = \frac {2 \arcsin x} {\sqrt {1 - x^2}} \\

y'' = \frac {2 \left( 1 - \arcsin x \dfrac {-2x} {2 \sqrt {1 - x^2}} \right)} {1 - x^2} = \frac {2(\sqrt {1 - x^2} + x \arcsin x)} {(1 - x^2)^{\frac 3 2}} \\

(1 - x^2) y'' - xy' = 2 + \frac {2x \arcsin x} {\sqrt {1 - x^2}} - \frac {2x \arcsin x} {\sqrt {1 - x^2}} = 2

y′=1−x2​2arcsinx​y′′=1−x22(1−arcsinx21−x2​−2x​)​=(1−x2)23​2(1−x2​+xarcsinx)​(1−x2)y′′−xy′=2+1−x2​2xarcsinx​−1−x2​2xarcsinx​=2

(2) 解:由莱布尼茨公式,对 (1)(1)(1) 中结论求 n−2n - 2n−2 阶导:

(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0 (1 - x^2) y^{(n)} - (2n - 3) xy^{(n - 1)} - (n - 2)^2 y^{(n - 2)} = 0

(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0

令 x=0x = 0x=0,可得:

y(n)(0)=(n−2)2y(n−2)(0) y^{(n)}(0) = (n - 2)^2 y^{(n - 2)}(0)

y(n)(0)=(n−2)2y(n−2)(0)

又已知 y′(0)=0,y′′(0)=2y'(0) = 0, y''(0) = 2y′(0)=0,y′′(0)=2,可知:

y(n)(0)={0n=2k−12k(k−1)!n=2k y^{(n)}(0) = \begin {cases}

0 & n = 2k - 1 \\

2^k (k - 1)! & n = 2k

\end {cases}

y(n)(0)={02k(k−1)!​n=2k−1n=2k​

设函数

f(x)={x2nsin⁡1x,x≠00,x=0f(x) = \begin {cases}

x^{2n} \sin \dfrac 1 x, & x \not = 0 \\

0, & x = 0

\end {cases}

f(x)=⎩⎨⎧​x2nsinx1​,0,​x=0x=0​

求 f(n)(0)f^{(n)}(0)f(n)(0)。

解:令 g(x)=sin⁡1xg(x) = \sin \dfrac 1 xg(x)=sinx1​,则:

g′(x)=x−2sin⁡(1x+π2)g′′(x)=−2x−3sin⁡(1x+π2)−x−4sin⁡(1x+π)g′′′(x)=6x−4sin⁡(1x+π2)+6x−5sin⁡(1x+π)−x−6sin⁡(1x+3π2) g'(x) = x^{-2} \sin \left( \frac 1 x + \frac \pi 2 \right) \\

g''(x) = -2x^{-3} \sin \left( \frac 1 x + \frac \pi 2 \right) - x^{-4} \sin \left( \frac 1 x + \pi \right) \\

g'''(x) = 6x^{-4} \sin \left( \frac 1 x + \frac \pi 2 \right) + 6x^{-5} \sin \left( \frac 1 x + \pi \right) - x^{-6} \sin \left( \frac 1 x + \frac {3 \pi} 2 \right)

g′(x)=x−2sin(x1​+2π​)g′′(x)=−2x−3sin(x1​+2π​)−x−4sin(x1​+π)g′′′(x)=6x−4sin(x1​+2π​)+6x−5sin(x1​+π)−x−6sin(x1​+23π​)

由归纳法知:

g(n)(x)=∑i=1n−1anxn+isin⁡(1x+iπ2)+(−x−2)isin⁡(1x+iπ2) g^{(n)}(x) = \sum_{i = 1}^{n - 1} a_n x^{n + i} \sin \left( \frac 1 x + \frac {i \pi} 2 \right) + (-x^{-2})^i \sin \left( \frac 1 x + \frac {i \pi} 2 \right)

g(n)(x)=i=1∑n−1​an​xn+isin(x1​+2iπ​)+(−x−2)isin(x1​+2iπ​)

由莱布尼茨公式可得:

f(m)(x)=∑i=0m(2n)!(2n−m+i)!x2n−m+i[∑k=1i−1akx−(k+i)sin⁡(1x+kπ2)+(−x−2)isin⁡(1x+iπ2)]=(−1)mx2n−2msin⁡(1x+mπ2)+O(∣x∣2n−2m+1),x→0 \begin {aligned}

f^{(m)}(x) &= \sum_{i = 0}^m \frac {(2n)!} {(2n - m + i)!} x^{2n - m + i} \left[ \sum_{k = 1}^{i - 1} a_k x^{-(k + i)} \sin \left( \frac 1 x + \frac {k \pi} 2 \right) + (-x^{-2})^i \sin \left( \frac 1 x + \frac {i \pi} 2 \right) \right] \\

&= (-1)^m x^{2n - 2m} \sin \left( \frac 1 x + \frac {m \pi} 2 \right) + O \left( |x|^{2n - 2m + 1} \right), x \to 0

\end {aligned}

f(m)(x)​=i=0∑m​(2n−m+i)!(2n)!​x2n−m+i[k=1∑i−1​ak​x−(k+i)sin(x1​+2kπ​)+(−x−2)isin(x1​+2iπ​)]=(−1)mx2n−2msin(x1​+2mπ​)+O(∣x∣2n−2m+1),x→0​

由上式计算可得:

f′(0)=lim⁡x→0f(x)x=0f′′(0)=lim⁡x→0f′(x)x=0⋯ ⋯ f'(0) = \lim_{x \to 0} \frac {f(x)} x = 0 \\

f''(0) = \lim_{x \to 0} \frac {f'(x)} x = 0 \\

\cdots \, \cdots

f′(0)=x→0lim​xf(x)​=0f′′(0)=x→0lim​xf′(x)​=0⋯⋯

由数学归纳法可知,f′(x)=⋯=f(n)(x)=0f'(x) = \cdots = f^{(n)}(x) = 0f′(x)=⋯=f(n)(x)=0。

导数莱布尼茨公式