# 高阶导数的定义
定义 111: 如果函数 f(x)f(x)f(x) 的导数 f′(x)f'(x)f′(x) 仍可导,即
(f′(x))′=limΔx→0f′(x+Δx)−f′(x)Δx(f'(x))' = \lim_{\Delta x \to 0} \frac {f'(x + \Delta x) - f'(x)} {\Delta x}
(f′(x))′=Δx→0limΔxf′(x+Δx)−f′(x)
则称 (f′(x))′(f'(x))'(f′(x))′ 为函数 f(x)f(x)f(x) 的二阶导数,记为 f′′(x)f''(x)f′′(x)。
f(x)f(x)f(x) 的 nnn 阶导数记为:
f(n)(x),y(n),dnydxn,dnf(x)dxnf^{(n)}(x), y^{(n)}, \frac {\mathrm d^n y} {\mathrm d x^n}, \frac {\mathrm d^n f(x)} {\mathrm d x^n}
f(n)(x),y(n),dxndny,dxndnf(x)
二阶和二阶以上的导数统称为高阶导数。
# 莱布尼茨公式
定理 111(莱布尼茨公式): 设函数 f(x)f(x)f(x) 和 g(x)g(x)g(x) 具有 nnn 阶导数,则
(f⋅g)(n)=∑k=0nCnkf(n−k)g(k)(f \cdot g)^{(n)} = \sum_{k = 0}^n C_n^k f^{(n - k)} g^{(k)}
(f⋅g)(n)=k=0∑nCnkf(n−k)g(k)
证明(归纳法): 令 n−k=i,k=jn - k = i, k = jn−k=i,k=j,公式变为:
(f⋅g)(n)=∑i+j=n(i+j)!i!j!f(i)g(j)(f \cdot g)^{(n)} = \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j)}
(f⋅g)(n)=i+j=n∑i!j!(i+j)!f(i)g(j)
(1) 当 n=2n = 2n=2 显然成立;
(2) 设 (f⋅g)(n)=∑i+j=n(i+j)!i!j!f(i)g(j)(f \cdot g)^{(n)} = \sum_{i + j = n} \dfrac {(i + j)!} {i! j!} f^{(i)} g^{(j)}(f⋅g)(n)=∑i+j=ni!j!(i+j)!f(i)g(j) 成立;
(3)
(f⋅g)(n+1)=(∑i+j=n(i+j)!i!j!f(i)g(j))′=∑i+j=n(i+j)!i!j!(f(i)g(j))′=∑i+j=n(i+j)!i!j!f(i+1)g(j)+∑i+j=n(i+j)!i!j!f(i)g(j+1)=∑i+j=n+1(n!(i−1)!j!+n!i!(j−1)!)f(i)g(j)=∑i+j=n+1(n+1)!i!j!f(i)g(j)\begin {aligned}
(f \cdot g)^{(n + 1)} &= \left( \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j)} \right)' \\
&= \sum_{i + j = n} \frac {(i + j)!} {i! j!} (f^{(i)} g^{(j)})' \\
&= \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i + 1)} g^{(j)} + \sum_{i + j = n} \frac {(i + j)!} {i! j!} f^{(i)} g^{(j + 1)} \\
&= \sum_{i + j = n + 1} \left( \frac {n!} {(i - 1)! j!} + \frac {n!} {i! (j - 1)!} \right) f^{(i)} g^{(j)} \\
&= \sum_{i + j = n + 1} \frac {(n + 1)!} {i! j!} f^{(i)} g^{(j)}
\end {aligned}
(f⋅g)(n+1)=(i+j=n∑i!j!(i+j)!f(i)g(j))′=i+j=n∑i!j!(i+j)!(f(i)g(j))′=i+j=n∑i!j!(i+j)!f(i+1)g(j)+i+j=n∑i!j!(i+j)!f(i)g(j+1)=i+j=n+1∑((i−1)!j!n!+i!(j−1)!n!)f(i)g(j)=i+j=n+1∑i!j!(n+1)!f(i)g(j)
# 高阶导数的计算
# 直接计算,求出前几阶后归纳法证明通式
例 111. 设 y=ln(1+x)y = \ln (1 + x)y=ln(1+x),求 y(n)y^{(n)}y(n).
解:
y′=11+xy′′=−1(1+x)2y′′′=2!(1+x)3y(4)=−3!(1+x)4⋯ ⋯y(n)=(−1)n−1(n−1)!(1+x)n(n≥1,0!=1)\begin {matrix}
y' = \dfrac 1 {1 + x} & y'' = - \dfrac 1 {(1 + x)^2} \\
y''' = \dfrac {2!} {(1 + x)^3} & y^{(4)} = - \dfrac {3!} {(1 + x)^4} \\
\end {matrix} \\
\cdots \, \cdots \\
y^{(n)} = (-1)^{n - 1} \frac {(n - 1)!} {(1 + x)^n} \qquad (n \ge 1, 0! = 1)
y′=1+x1y′′′=(1+x)32!y′′=−(1+x)21y(4)=−(1+x)43!⋯⋯y(n)=(−1)n−1(1+x)n(n−1)!(n≥1,0!=1)
# 使用莱布尼茨公式
例 222. 设 y=x2e2xy = x^2 e^{2x}y=x2e2x,求 y(20)y^{(20)}y(20)。
解: 设 u=e2x,v=x2u = e^{2x}, v = x^2u=e2x,v=x2,则由莱布尼兹公式知:
y(20)=(e2x)(20)⋅x2+20(e2x)(19)⋅(x2)′+20×192!(e2x)(18)⋅(x2)′′+0=220e2x⋅x2+20⋅219e2x⋅2x+20⋅192!218e2x⋅2=220e2x(x2+20x+95)\begin {aligned}
y^{(20)} &= (e^{2x})^{(20)} \cdot x^2 + 20 (e^{2x})^{(19)} \cdot (x^2)' + \frac {20 \times 19} {2!} (e^{2x})^{(18)} \cdot (x^2)'' + 0 \\
&= 2^{20} e^{2x} \cdot x^2 + 20 \cdot 2^{19} e^{2x} \cdot 2x + \frac {20 \cdot 19} {2!} 2^{18} e^{2x} \cdot 2 \\
&= 2^{20} e^{2x} (x^2 + 20x + 95)
\end {aligned}
y(20)=(e2x)(20)⋅x2+20(e2x)(19)⋅(x2)′+2!20×19(e2x)(18)⋅(x2)′′+0=220e2x⋅x2+20⋅219e2x⋅2x+2!20⋅19218e2x⋅2=220e2x(x2+20x+95)
例 333. 设 y=arcsinxy = \arcsin xy=arcsinx,求 y(n)(0)y^{(n)}(0)y(n)(0)。
解: 由 y′=11−x2,y′′=x(1−x2)32=xy′1−x2y' = \dfrac 1 {\sqrt {1 - x^2}}, y'' = \dfrac x {(1 - x^2)^{\frac 3 2}} = \dfrac {xy'} {1 - x^2}y′=1−x21,y′′=(1−x2)23x=1−x2xy′ 得:
(1−x2)y′′−xy′=0(1 - x^2)y'' - xy' = 0
(1−x2)y′′−xy′=0
由莱布尼茨公式求 n−2n - 2n−2 次导得:
(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0(n≥3)(1 - x^2) y^{(n)} - (2n - 3) xy^{(n - 1)} - (n - 2)^2 y^{(n - 2)} = 0 (n \ge 3)
(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0(n≥3)
令 x=0x = 0x=0 有 y(n)(0)=(n−2)2y(n−2)(0)y^{(n)}(0) = (n - 2)^2 y^{(n - 2)}(0)y(n)(0)=(n−2)2y(n−2)(0)。
由 y′(0)=1,y′′(0)=0y'(0) = 1, y''(0) = 0y′(0)=1,y′′(0)=0 得:
y(n)(0)={[(2k−1)!!]2n=2k+1,0n=2k.y^{(n)}(0) = \begin {cases}
[(2k - 1)!!]^2 & n = 2k + 1, \\
0 & n = 2k.
\end {cases}
y(n)(0)={[(2k−1)!!]20n=2k+1,n=2k.
# 间接法:利用已知的高阶导数
常用高阶导数公式:
(ax)(n)=axlnna(a>0),(ex)(n)=ex(a^x)^{(n)} = a^x \ln^n a \quad (a > 0), (e^x)^{(n)} = e^x(ax)(n)=axlnna(a>0),(ex)(n)=ex
(sinkx)(n)=knsin(kx+nπ2)(\sin kx)^{(n)} = k^n \sin (kx + \dfrac {n \pi} 2)(sinkx)(n)=knsin(kx+2nπ)
(coskx)(n)=kncos(kx+nπ2)(\cos kx)^{(n)} = k^n \cos (kx + \dfrac {n \pi} 2)(coskx)(n)=kncos(kx+2nπ)
(xα)(n)=α!(α−n)!xα−n(x^{\alpha})^{(n)} = \dfrac {\alpha!} {(\alpha - n)!} x^{\alpha - n}(xα)(n)=(α−n)!α!xα−n
(lnx)(n)=(−1)n−1(n−1)!xn(\ln x)^{(n)} = (-1)^{n - 1} \dfrac {(n - 1)!} {x^n}(lnx)(n)=(−1)n−1xn(n−1)!
(1x)(n)=(−1)nn!xn+1(\dfrac 1 x)^{(n)} = (-1)^n \dfrac {n!} {x^{n + 1}}(x1)(n)=(−1)nxn+1n!
例 444. 设 y=sin6x+cos6xy = \sin^6 x + \cos^6 xy=sin6x+cos6x,求 y(n)y^{(n)}y(n)。
解:
y=(sin2x)3+(cos2x)3=(sin2x+cos2x)(sin4x−sin2xcos2x+cos4x)=(sin2x+cos2x)2−3sin2xcos2x=1−34sin22x=1−34⋅1−cos4x2=58+38cos4x∴y(n)=38⋅4n⋅cos(4x+nπ2)\begin {aligned}
y &= (\sin^2 x)^3 + (\cos^2 x)^3 \\
&= (\sin^2 x + \cos^2 x)(\sin^4 x - \sin^2 x \cos^2 x + \cos^4 x) \\
&= (\sin^2 x + \cos^2 x)^2 - 3 \sin^2 x \cos^2 x \\
&= 1 - \frac 3 4 \sin^2 2x = 1 - \frac 3 4 \cdot \frac {1 - \cos 4x} 2 \\
&= \frac 5 8 + \frac 3 8 \cos 4x
\end {aligned} \\
\therefore y^{(n)} = \dfrac 3 8 \cdot 4^{n} \cdot \cos (4x + \dfrac {n \pi} 2)
y=(sin2x)3+(cos2x)3=(sin2x+cos2x)(sin4x−sin2xcos2x+cos4x)=(sin2x+cos2x)2−3sin2xcos2x=1−43sin22x=1−43⋅21−cos4x=85+83cos4x∴y(n)=83⋅4n⋅cos(4x+2nπ)
# 习题
求下列函数的 nnn 阶导数:
(1) y=sinaxsinbxy = \sin ax \sin bxy=sinaxsinbx;
(2) y=ex(sinx+cosx)y = e^x (\sin x + \cos x)y=ex(sinx+cosx);
(3) y=lna+bxa−bxy = \ln \dfrac {a + bx} {a - bx}y=lna−bxa+bx。
(1) y=sinaxsinbx=12(cos[(a−b)x]−cos[(a+b)x])y = \sin ax \sin bx = \dfrac 1 2 (\cos [(a - b) x] - \cos [(a + b) x])y=sinaxsinbx=21(cos[(a−b)x]−cos[(a+b)x]),则:
y(n)(x)=12(a−b)n[cos(a−b)x+nπ2]−12(a+b)n[cos(a+b)x+nπ2] y^{(n)}(x) = \frac 1 2 (a - b)^n \left[ \cos (a - b) x + \frac {n \pi} 2 \right] - \frac 1 2 (a + b)^n \left[ \cos (a + b) x + \frac {n \pi} 2 \right]
y(n)(x)=21(a−b)n[cos(a−b)x+2nπ]−21(a+b)n[cos(a+b)x+2nπ]
能不产生 nnn 项求和符号就不出现(之前直接套用了莱布尼茨公式,然后成了 nnn 项求和表示形式,不如这个简洁)
(2) 解:化简原函数得:
y=2exsin(x+π4)y(n)=(2)n+1exsin[x+(n+1)π4] y = \sqrt 2 e^x \sin \left( x + \frac \pi 4 \right) \\
y^{(n)} = (\sqrt 2)^{n + 1} e^x \sin \left[ x + \frac {(n + 1) \pi} 4 \right]
y=2exsin(x+4π)y(n)=(2)n+1exsin[x+4(n+1)π]
原因同上
(3) 解:
y=ln(a+bx)−ln(a−bx)y′=ba+bx+ba−bxy′′=−b2(a+bx)2+b2(a−bx)2⋯ ⋯y(n)=(n−1)![bn(a−bx)n+(−1)n−1bn(a+bx)n] y = \ln (a + bx) - \ln (a - bx) \\
y' = \frac b {a + bx} + \frac b {a - bx} \\
y'' = - \frac {b^2} {(a + bx)^2} + \frac {b^2} {(a - bx)^2} \\
\cdots \, \cdots\\
y^{(n)} = (n - 1)! \left[ \frac {b^n} {(a - bx)^n} + (-1)^{n - 1} \frac {b^n} {(a + bx)^n} \right]
y=ln(a+bx)−ln(a−bx)y′=a+bxb+a−bxby′′=−(a+bx)2b2+(a−bx)2b2⋯⋯y(n)=(n−1)![(a−bx)nbn+(−1)n−1(a+bx)nbn]
求下列函数的 nnn 阶导数:
y=x2sin3xy = x^2 \sin 3x
y=x2sin3x
解:当 n≤2n \le 2n≤2 时,由莱布尼茨公式:
y(n)=∑i=0nCni(n−i)!i!3isin(3x+iπ2) y^{(n)} = \sum_{i = 0}^n C_n^i \frac {(n - i)!} {i!} 3^{i} \sin (3x + \frac {i \pi} 2)
y(n)=i=0∑nCnii!(n−i)!3isin(3x+2iπ)
当 n>2n > 2n>2 时,由莱布尼茨公式:
y(n)=3nx2sin(3x+nπ2)+2n⋅3n−1xsin[3x+(n−1)π2]+n(n−2)⋅3n−2sin[3x+(n−2)π2] y^{(n)} = 3^n x^2 \sin (3x + \frac {n \pi} 2) + 2n \cdot 3^{n - 1} x \sin \left[ 3x + \frac {(n - 1) \pi} 2 \right] + n (n - 2) \cdot 3^{n - 2} \sin \left[ 3x + \frac {(n - 2) \pi} 2 \right]
y(n)=3nx2sin(3x+2nπ)+2n⋅3n−1xsin[3x+2(n−1)π]+n(n−2)⋅3n−2sin[3x+2(n−2)π]
套用莱布尼茨公式时忘了算组合数
对下列方程所确定的隐函数 y=y(x)y = y(x)y=y(x),求 d2ydx2\dfrac {\mathrm d^2 y} {\mathrm d x^2}dx2d2y:
tan(x+y)−xy=0\tan (x + y) - xy = 0
tan(x+y)−xy=0
解:左右两边同时对 xxx 求导:
(1+dydx)sec2(x+y)−y−xdydx=0(1) \left( 1 + \frac {\mathrm d y} {\mathrm d x} \right) \sec^2 (x + y) - y - x \frac {\mathrm d y} {\mathrm d x} = 0 \tag {1}
(1+dxdy)sec2(x+y)−y−xdxdy=0(1)
整理得:
dydx=y−sec2(x+y)sec2(x+y)−x \frac {\mathrm d y} {\mathrm d x} = \frac {y - \sec^2 (x + y)} {\sec^2 (x + y) - x}
dxdy=sec2(x+y)−xy−sec2(x+y)
对 (1)(1)(1) 式两边继续对 xxx 求导得:
d2ydx2sec2(x+y)+(1+dydx)2⋅2sec2(x+y)tan(x+y)−2dydx−xd2ydx=0 \frac {\mathrm d^2 y} {\mathrm d x^2} \sec^2 (x + y) + \left( 1 + \frac {\mathrm d y} {\mathrm d x} \right)^2 \cdot 2 \sec^2 (x + y) \tan (x + y) - 2 \frac {\mathrm d y} {\mathrm d x} - x \frac {\mathrm d^2 y} {\mathrm d x} = 0
dx2d2ysec2(x+y)+(1+dxdy)2⋅2sec2(x+y)tan(x+y)−2dxdy−xdxd2y=0
整理得:
d2ydx2=[2−4sec2(x+y)tan(x+y)]y−sec2(x+y)sec2(x+y)−x−2sec2(x+y)tan(x+y)sec2(x+y)+2sec2(x+y)tan(x+y)−x \frac {\mathrm d^2 y} {\mathrm d x^2} = \frac {[2 - 4 \sec^2 (x + y) \tan (x + y)] \dfrac {y - \sec^2 (x + y)} {\sec^2 (x + y) - x} - 2 \sec^2 (x + y) \tan (x + y)} {\sec^2 (x + y) + 2 \sec^2 (x + y) \tan (x + y) - x}
dx2d2y=sec2(x+y)+2sec2(x+y)tan(x+y)−x[2−4sec2(x+y)tan(x+y)]sec2(x+y)−xy−sec2(x+y)−2sec2(x+y)tan(x+y)
对下列参数方程确定的函数 y=y(x)y = y(x)y=y(x),求 d2ydx2\dfrac {\mathrm d^2 y} {\mathrm d x^2}dx2d2y:
{x=atcosty=atsint\begin {cases}
x = at \cos t \\
y = at \sin t
\end {cases}
{x=atcosty=atsint
解:
dxdt=a(cost−tsint)dydt=a(sint+tcost)dydx=dydtdxdt=sint+tcostcost−tsintd2ydx2=ddydxdtdxdt=(2sint+tcost)(sint+tcost)+(cost−tsint)(2cost−tsint)(cost−tsint)2a(cost−tsint)=t2+2a(cost−tsint)3 \frac {\mathrm d x} {\mathrm d t} = a (\cos t - t \sin t) \\
\frac {\mathrm d y} {\mathrm d t} = a (\sin t + t \cos t) \\
\frac {\mathrm d y} {\mathrm d x} = \frac {\dfrac {\mathrm d y} {\mathrm d t}} {\dfrac {\mathrm d x} {\mathrm d t}} = \frac {\sin t + t \cos t} {\cos t - t \sin t} \\
\frac {\mathrm d^2 y} {\mathrm d x^2} = \frac {\dfrac {\mathrm d \dfrac {\mathrm d y} {\mathrm d x}} {\mathrm d t}} {\dfrac {\mathrm d x} {\mathrm d t}} = \frac {\dfrac {(2 \sin t + t \cos t)(\sin t + t \cos t) + (\cos t - t \sin t)(2 \cos t - t \sin t)} {(\cos t - t \sin t)^2}} {a (\cos t - t \sin t)} = \frac {t^2 + 2} {a (\cos t - t \sin t)^3}
dtdx=a(cost−tsint)dtdy=a(sint+tcost)dxdy=dtdxdtdy=cost−tsintsint+tcostdx2d2y=dtdxdtddxdy=a(cost−tsint)(cost−tsint)2(2sint+tcost)(sint+tcost)+(cost−tsint)(2cost−tsint)=a(cost−tsint)3t2+2
一阶导的分子分母搞反了
设 y=(arcsinx)2y = (\arcsin x)^2y=(arcsinx)2,
(1) 证明:(1−x2)y′′−xy′=2(1 - x^2) y'' - xy' = 2(1−x2)y′′−xy′=2;(2) 求 y(n)(0)y^{(n)}(0)y(n)(0)。
(1) 证明:
y′=2arcsinx1−x2y′′=2(1−arcsinx−2x21−x2)1−x2=2(1−x2+xarcsinx)(1−x2)32(1−x2)y′′−xy′=2+2xarcsinx1−x2−2xarcsinx1−x2=2 y' = \frac {2 \arcsin x} {\sqrt {1 - x^2}} \\
y'' = \frac {2 \left( 1 - \arcsin x \dfrac {-2x} {2 \sqrt {1 - x^2}} \right)} {1 - x^2} = \frac {2(\sqrt {1 - x^2} + x \arcsin x)} {(1 - x^2)^{\frac 3 2}} \\
(1 - x^2) y'' - xy' = 2 + \frac {2x \arcsin x} {\sqrt {1 - x^2}} - \frac {2x \arcsin x} {\sqrt {1 - x^2}} = 2
y′=1−x22arcsinxy′′=1−x22(1−arcsinx21−x2−2x)=(1−x2)232(1−x2+xarcsinx)(1−x2)y′′−xy′=2+1−x22xarcsinx−1−x22xarcsinx=2
(2) 解:由莱布尼茨公式,对 (1)(1)(1) 中结论求 n−2n - 2n−2 阶导:
(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0 (1 - x^2) y^{(n)} - (2n - 3) xy^{(n - 1)} - (n - 2)^2 y^{(n - 2)} = 0
(1−x2)y(n)−(2n−3)xy(n−1)−(n−2)2y(n−2)=0
令 x=0x = 0x=0,可得:
y(n)(0)=(n−2)2y(n−2)(0) y^{(n)}(0) = (n - 2)^2 y^{(n - 2)}(0)
y(n)(0)=(n−2)2y(n−2)(0)
又已知 y′(0)=0,y′′(0)=2y'(0) = 0, y''(0) = 2y′(0)=0,y′′(0)=2,可知:
y(n)(0)={0n=2k−12k(k−1)!n=2k y^{(n)}(0) = \begin {cases}
0 & n = 2k - 1 \\
2^k (k - 1)! & n = 2k
\end {cases}
y(n)(0)={02k(k−1)!n=2k−1n=2k
设函数
f(x)={x2nsin1x,x≠00,x=0f(x) = \begin {cases}
x^{2n} \sin \dfrac 1 x, & x \not = 0 \\
0, & x = 0
\end {cases}
f(x)=⎩⎨⎧x2nsinx1,0,x=0x=0
求 f(n)(0)f^{(n)}(0)f(n)(0)。
解:令 g(x)=sin1xg(x) = \sin \dfrac 1 xg(x)=sinx1,则:
g′(x)=x−2sin(1x+π2)g′′(x)=−2x−3sin(1x+π2)−x−4sin(1x+π)g′′′(x)=6x−4sin(1x+π2)+6x−5sin(1x+π)−x−6sin(1x+3π2) g'(x) = x^{-2} \sin \left( \frac 1 x + \frac \pi 2 \right) \\
g''(x) = -2x^{-3} \sin \left( \frac 1 x + \frac \pi 2 \right) - x^{-4} \sin \left( \frac 1 x + \pi \right) \\
g'''(x) = 6x^{-4} \sin \left( \frac 1 x + \frac \pi 2 \right) + 6x^{-5} \sin \left( \frac 1 x + \pi \right) - x^{-6} \sin \left( \frac 1 x + \frac {3 \pi} 2 \right)
g′(x)=x−2sin(x1+2π)g′′(x)=−2x−3sin(x1+2π)−x−4sin(x1+π)g′′′(x)=6x−4sin(x1+2π)+6x−5sin(x1+π)−x−6sin(x1+23π)
由归纳法知:
g(n)(x)=∑i=1n−1anxn+isin(1x+iπ2)+(−x−2)isin(1x+iπ2) g^{(n)}(x) = \sum_{i = 1}^{n - 1} a_n x^{n + i} \sin \left( \frac 1 x + \frac {i \pi} 2 \right) + (-x^{-2})^i \sin \left( \frac 1 x + \frac {i \pi} 2 \right)
g(n)(x)=i=1∑n−1anxn+isin(x1+2iπ)+(−x−2)isin(x1+2iπ)
由莱布尼茨公式可得:
f(m)(x)=∑i=0m(2n)!(2n−m+i)!x2n−m+i[∑k=1i−1akx−(k+i)sin(1x+kπ2)+(−x−2)isin(1x+iπ2)]=(−1)mx2n−2msin(1x+mπ2)+O(∣x∣2n−2m+1),x→0 \begin {aligned}
f^{(m)}(x) &= \sum_{i = 0}^m \frac {(2n)!} {(2n - m + i)!} x^{2n - m + i} \left[ \sum_{k = 1}^{i - 1} a_k x^{-(k + i)} \sin \left( \frac 1 x + \frac {k \pi} 2 \right) + (-x^{-2})^i \sin \left( \frac 1 x + \frac {i \pi} 2 \right) \right] \\
&= (-1)^m x^{2n - 2m} \sin \left( \frac 1 x + \frac {m \pi} 2 \right) + O \left( |x|^{2n - 2m + 1} \right), x \to 0
\end {aligned}
f(m)(x)=i=0∑m(2n−m+i)!(2n)!x2n−m+i[k=1∑i−1akx−(k+i)sin(x1+2kπ)+(−x−2)isin(x1+2iπ)]=(−1)mx2n−2msin(x1+2mπ)+O(∣x∣2n−2m+1),x→0
由上式计算可得:
f′(0)=limx→0f(x)x=0f′′(0)=limx→0f′(x)x=0⋯ ⋯ f'(0) = \lim_{x \to 0} \frac {f(x)} x = 0 \\
f''(0) = \lim_{x \to 0} \frac {f'(x)} x = 0 \\
\cdots \, \cdots
f′(0)=x→0limxf(x)=0f′′(0)=x→0limxf′(x)=0⋯⋯
由数学归纳法可知,f′(x)=⋯=f(n)(x)=0f'(x) = \cdots = f^{(n)}(x) = 0f′(x)=⋯=f(n)(x)=0。
导数莱布尼茨公式